Digital Image Processing

e Today: Chapter 2 from the course text book
(Gonzales and Woods, Digital Image Processing)

* Linear and nonlinear operations
e |nterpolation

 (Geometrical transformations
(Affine transformations)

e The Fourier Transform



Transform to Fourier
Fregquency) space

Spatial Frequency!



| ets start with 1D

Oval
Window

Partltlon

Tectorial
Membrane

e Cochlea of the human ear



requency plot

Amplitude

10 kHz

Sound Wave Frequency

Fluid canal with hair cells




F{a0} =6(f) = [ g(®e*at

Time and space

Pressure Amplitude

> >

t _ f=1/1
Time Frequency

We can Fourier Transform back and forth



Fourler series

Amplitude

Frequency

Pressure vs Time Amplitude vs Frequency




Short-time Fourier spectrogram

frequency

A




Aphex Twin “Mathematical Equation”
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Lets go back to the simplest
way to plot frequency of sound:

Amplitude

10 kHz

Sound Wave Frequency

Fluid canal with hair cells




1D spatial frequency




2D spatial frequency




Spatial filtering

f(x,y)

| pE—

8 Spatial

domain

T(u,v)
Transform

(:)]ml'zll 10N

R

R[T(u,v)]

Inverse =
. g(x,y)
transform

Spatial
domain




Tip:

* To getrid of ringing and artifacts when you do
spatial filtering in Fourier space: don't apply a
discrete binary mask, but apply a butterworth or

similar filter to smooth out the sharp edge of the
mask




Point Spread Function (PSF)

Imaging systems like cameras and microscope
cannot image with infinitely small resolution

A point (infinitely small spot) in real space thus
becomes a blurred spot In Image space

he size and shape of this blur spot is described
by the PSF

The image is the PSF convolved by each point
source In the object



The convolution clearly has a blurring effect, explained by the averaging process. But we can also
understand this as the result of a low-pass filter. Indeed, in the spatial domain, P corresponds to
P, which is the indicator function of a circular lens aperture. Considered as a transfer function, P
eliminates all frequency content for ||w| > a. Consequently, we observe a true low-pass version of
the original image.

(a) circular aperture (b) point spread function

(c) original image (d) convolved with PSF

Figure 3: The Lena image convolved with the point spread function of a circular aperture. The result
is a low-pass filtered version of the original image, corresponding to the local averaging performed by
the convolution. The Airy disk, whose width is determined by the first zero of the Bessel function J;,
determines the region of greatest contribution to each local average.




Convolution

« Convolution in real space is a multiplication in
Fourier space - simpler operation

» Convolution is kind of a “drag-and-stamp”
operation




3 Convolutions

The convolution product in R is defined as

/f g(t —u)d

The convolution product is

(i) Commutative: f*g = g=* f for any f,g.
(ii) Associative: (fxg)*xh = f % (g h) for any f, g, h.

- IJ -
For fixed h we can define the convolution operator f + g = h * f. Roughly speaking, the
output g is the local averages of the input f, weighted by the function h. For instance, when h is
a Gaussian curve, g is a smoothed version of f.

A convolution operator is a TIO. Indeed,
L0 = [ fu=h(t-wdu

= /f )h((t — 7) — u) du
f*h)

(t—7)
= ( f)r(t)

Conversely, every TIO is a convolution operator. To see this, we write

g(t) = /h(t,u)f(u)du.

This is the continuous analog of a matrix-vector product. To prove the claim, consider on one hand

9:(t) = (LF)+(t) = / Bt — 7,u) f (u) du. 1)




« Convolution in real space corresponds to
multiplication in Fourier space!




lmage formation: Diffraction

Shit

(e.g. small aperture)

Light entering shaded
area behind slit

L

Wavelength

Light shield (e.g. aperture blades)




* Fine spatial frequencies diffract light stronger:
this is why the finer spatial frequencies end up
at the edges in Fourier space
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Two-lens imaging system

|




Optics: frequency space OTF support
corresponds to the physical aperture size

OTF = Optical Transfer Function
(kx, ky) are the spatial coordinates in frequency (Fourier) space



Aperture also determines
the depth of field

f/8 f/11 f/16 f/22



Circle of Confusion




| arge aperture = less DOF




F# ("F-number”) = 1/D

Determined by ratio of lens focal length fand lens aperture Diameter D
YOU DON’T NEED TO MEMORIZE THIS DEFINITION,
[1TS JUST FOR REFERENCE

f11=F/(v2)° f.a=f/(v2)




Small aperture
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Microscope Obijective

Nikon CFIl60 Infinity-Corrected Objective

- F 25 Millimeter
- Thread Size

Optical Nikon | | Lens
Correction Plan Fluor & o Triplet

Magnification 60x/085 Numerical ,. '}  Group

Objective DIC M Aperture

Working ’ 11.023 WD 0.30
Parameters , o

. - Correction — 4 . Doublet
| ;||i Collar | ‘

Coverslip
Thickness
Gauge

Retractable

Lens Hemispherical
Housing Front

Lens




Numerical Aperture (NA) in a microscope
can be super large -> really high resolution

Lightthatis not captured

by objectve lenses with ‘ NA=n - sin (¥) |
loveer numencal apertures




Axial PSF measurements
N a microscope




Operations

e Element wise (pixel by pixel) vs. Matrix operations

e Single-pixel vs neighborhood:

e Single-pixel: grab e.g. the value of the one
nearest pixel)

* Neighborhood (calculate and use e.g. the
average / max / min value of the nearest
neighbors)




Resize with single nearest
neighbor interpolation

* Take an image of size 500x500 pixels.

e Resize this to 750x750 pixels:

» Shrink the 750x750 grid to overlay the original
and select the value of each pixel in the new

image to that of the nearest pixel of the original
image

e \Works, but introduces artitacts such as distortion
of straight edges



Neighbors of a pixel

* Pixel p at coordinates (x,y) has two horizontal
and two vertical neighbors with coordinates:

4-neigborhood: (x+1,y), (x-1,y), (x,y+1), (X,y-1)

* Pixel p at coordinates (x,y) also has four
diagonal neighbors with coordinates:

(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)



Open or Closed

Origin e Yo

-iixcl lits value'is f(x;, y,)]

B
E'm . Neighborhood of
“mally| pivel pis said to be
open if it doesn't
contain p and
closed if it
—— contains p




Bllinear interpolation

* Use the four nearest neighbors to estimate the
iIntensity at a given location.

 Note: “linear” in bilinear refers to lines, not linearity,
it IS not a linear operation since it multiplies coordinates



Bicubic Interpolation

e Sixteen nearest neighbors:

e Subpixel accuracy fills the gaps



Average when downsizing

200x226 pixels; 8-bit; 44K 200x226 pixels; 8-bit; 44K
534x604 pixels; 8-bit; 315K

Y K

N\

* Edges lose contrast if you average but result is smoother




Median

e | ets do this as an exercise!



Geometrical transformations

e 2D affine transformations: “rubber-sheet”

* Include scaling, translation, rotation and
shearing

e Preserve points, straight lines and planes



Transformation
Name

Identity

Scaling/Reflection
(For reflection, set one
scaling factor to —1
and the other to 0)

Rotation (about the

origin)

Translation

Shear (vertical)

Shear (horizontal)

Affine Matrix. A

0

Coordinate
Equations

x"=xcosf@—ysinf
y' = xsinf + ycos6

Example




lmage rotation and intensity
INnterpolation







Distortion and registration
errors
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Image Registration

» Put fiducial markers in the object before imaging
(or in the original image before transforming)

* This way you have ground truth in a few
locations



L Inear vs. Nonlinear

e Linear versus nonlinear operations
e Additivity and homogeneity:

aft(xyy) + bt(xy)] =
aft(x,y)] + Hbf(x,y)] =

a g(x,y) + b g(x,y)




-or example;

e Addition is linear

e Operation to find max pixel in matrix is nonlinear



INnterpolation

Jsing known data to estimate values at unknown
ocations, used e.g. when:

 /Zooming / Resizing images

* Rotating and other affine transformations



Chapter 3

Contrast and display
scales



Threshold -> binarize




Inverting the iImage




pDetter

visibility for display

INg can give

Invert
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| 0g scale display




HIstograms




Measuring image contrast

ﬂ o =34

lllustration of the mean and standard deviation as functions of
image contrast. (a)-(c) Images with low, medium, and high
contrast, respectively. (Original image courtesy of the National

Cancer Institute.)




