Midterm is on Thursday!

Project presentations are May 17th, 22nd and 24th

Next week there is a strike on campus. Class is therefore cancelled on Tuesday. Please work on your presentations instead!

REVIEW

From results on practice midterm: Half of the class needs another review!

Spatial frequency

(b) Low-frequency square wave

(c) High-contrast sinusoidal spatial grid

 (d) Low-contrast sinusoidal spatial grid

1D Frequency Spectrum

Frequency spectrum

2D Fourier Transform Power Spectrum

• 2D Fourier transform of the *Dunes* photograph

- Both in space and time
- Select acquisition speed

Sampling MMMM

- Select sensor size / Optical magnification
- Aliasing ightarrow

Nyquist sampling = twice the frequency

Aliasing

(Image

OOV

(nsized around four times)

Histogram shows distribution of gray-levels in an image

Lets plot the histogram of this synthetic image

Graylevel

Grayscale Histogram

gray level

Color Histogram

Image enhancement

• In the pixel domain, for example:

Convolution

 Let f be the image and g be the kernel. The output of convolving f with g is denoted f* g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

- Convention: kernel is "flipped"
- MATLAB: conv2 vs. filter2 (also imfilter)

Convolution properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

"Drag-and-Stamp"

Local linear oprations on an image

What to do at the edges of the image

- An important point: Edge Effects
 - To compute all pixel values in the output image, we need to fill in a "border"

Mask dimension = 2M+1

Border dimension = M

Image Enhancement:Spatial Filtering Operation

- An important point: Edge Effects (Ex.: 5x5 Mask)
 - How to fill in a "border"
 - Zeros (Ringing)
 - Replication (Better)
 - Reflection ("Best")

- Procedure:
 - Replicate row-wise
 - Replicate column-wise
 - Apply filtering
 - Remove borders

MATLAB methods:

- clip filter (black):
- wrap around:
- copy edge:
- reflect across edge:

imfilter(f, g, 0)
imfilter(f, g, 'circular')
imfilter(f, g, 'replicate')
imfilter(f, g, 'symmetric')

What happens:

- Filter kernel operations on matrix (image)
- "Drag and Stamp" operation
- Using MATLAB: filter2(A,B)
 - use: 'same', 'valid' and 'full' parameters (ex: filter2(A,B,'full')

Filtering example

• MATLAB code how to apply filter kernel:

Gaussian blur filtering

- Filter with Gaussian kernel
- Filtering twice with a certain Gaussian is the same as filtering with this Gaussian convolved with itself -> MORE BLUR

fspecial('gauss',5,1)

 Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

Choosing kernel width

 Gaussian filters have infinite support, but discrete filters use finite kernels

Example code MATLAB

ImageO = imread('MushroomDownload.jpg'); Image = ImageO(:,:,1);

H = fspecial('motion',20,45); MotionBlur = imfilter(Image,H,'replicate'); subplot(2,1,2), imagesc(MotionBlur),axis equal, axis off, colormap gray subplot(2,1,1), imagesc(Image),axis equal, axis off, colormap gray

Blurring can be used for denoising

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

(Example from course textbook Gonzales & Wood)

Try this out on noisy data with median, gaussian etc...

Note: it's better to vectorize your code in MATLAB

tic for t = 1:1024 y(t) = sin(2*pi*t/512);end toc

tic y = sin(pi*(0:(1/256):2)); toc

You can read up on this at: http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

Fourier Transform

• Examples of spatial filtering in frequency space

Some Fourier Transform Pairs

Table: Richard Szeliski, Computer Vision and Applications, Springer, 2010, ISBN 978-1-84882-935-0, p.137, http://szeliski.org/Book/.

Fourier Transform Pairs

Function, f(t)	Fourier Transform, F(ω)
Definition of Inverse Fourier Transform $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	Definition of Fourier Transform $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$
$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
$f(t)e^{j\omega_0 t}$	$F(\omega - \omega_0)$
$f(\alpha t)$	$\frac{1}{ \alpha }F\left(\frac{\omega}{\alpha}\right)$
F(t)	$2\pi f(-\omega)$
$\frac{d^n f(t)}{dt^n}$	$(j\omega)^n F(\omega)$
$(-jt)^n f(t)$	$\frac{d^n F(\omega)}{d\omega^n}$
$\int_{-\infty}^{t} f(\tau) d\tau$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
$\delta(t)$	1
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
sgn (t)	$\frac{2}{j\omega}$

Function, f(t)	Fourier Transform, F(ω)
$j\frac{1}{\pi t}$	$sgn(\omega)$
<i>u</i> (<i>t</i>)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$	$2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\omega_0)$
$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$ au \operatorname{Sa}\left(\frac{\omega \tau}{2}\right)$
$\frac{B}{2\pi}$ Sa $\left(\frac{Bt}{2}\right)$	$\operatorname{rect}\left(\frac{\omega}{B}\right)$
tri(t)	$\operatorname{Sa}^2\left(\frac{\omega}{2}\right)$
$A\cos\left(\frac{\pi t}{2\tau}\right)\operatorname{rect}\left(\frac{t}{2\tau}\right)$	$\frac{A\pi}{\tau} \frac{\cos(\omega\tau)}{\left(\frac{\pi}{2\tau}\right)^2 - \omega^2}$
$\cos(\omega_0 t)$	$\pi \big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \big]$
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
$u(t)\cos(\omega_0 t)$	$\frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$
$u(t)\sin(\omega_0 t)$	$\frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega^2}{\omega_0^2 - \omega^2}$
$u(t)e^{-\alpha t}\cos(\omega_0 t)$	$\frac{(\alpha + j\omega)}{\omega_0^2 + (\alpha + j\omega)^2}$

Lets do an experiment with spatial frequency imaging

- Take an image of the line pairs with your cell phone
- If you don't have one, come up here and take them with a camera
- Download to your computer and Fourier transform the data. Can you recognize the spatial frequencies from the image?