
Digital imaging  
and  

image processing 
Review

Final Exam Monday June 11th at 8am   



Digital Data



Pixels



Digital Sensors

(a) Single sensing element.  
(b) Line sensor.  
(c) Array sensor. 



Digital Image



Grayscale image



Bit depth
• Binary: 0 and 1 

• 8 bit: 0 up to (2^8 =) 256 

• 16 bit: 0 up to (16^2 =) 65,536 

• 32 bit: 0 up to (32^2 =) 4,294,967,296 

• Color: RGB contains a red, green and blue 
matrix of the bit depth specified



Image displayed in  
32, 16, 8, 4, and 2  
intensity levels.



Saturation



Forming a vector



Color Images

blue

green red



Color sensor: Bayer pattern



We lose light



Dichroic Mirrors, 
Multiple Cameras

• N



Image Display
Simplest contrast adjustment:  

Set Min, Max of display



More powerful methods to 
improve contrast

Retinex—Medical Applications 12

Retinex—Examples—X-rays

Retinex—Medical Applications 21

Retinex—Examples—Other



In image space
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Image Enhancement I:  
Point-wise Operations 
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• Make image “better” for a specific application 
– The idea of “better” is somewhat subjective 

 
• We distinguish two domains: 

– Spatial or Pixel domain:   
– Frequency Domain: 

 
• For this section: Pixel Domain 

– Operations on single pixel at a time 
– Operations on groups of pixels (neighborhoods) 

),(or    ),( nmfyxf
),(or    ),( vuFwwF yx

Pixel 4-Neighbors 8-Neighbors 

Image Enhancement: Operating on the Pixels 
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Image Enhancement: Operating on the Pixels 



Operations
• Element-wise (pixel by pixel) vs. Matrix operations 

• Single-pixel vs neighborhood: 

• Single-pixel: grab e.g.  the value of the one 
nearest pixel)  

• Neighborhood (calculate and use e.g. the 
average / max / median / min or other 
calculated value of the nearest neighbors)
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Simplest form of processing: Point Processing 

),( nmfr  

Pixel 
T 

)(rTs  

0 255 r 

S=T(r) 

255 

Image “negative”: s=L-1-r 

No change 

Thresholding 

Black 
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Simplest form of processing: Point Processing 

),( nmfr  

Pixel 
T 

)(rTs  

0 255 r 

s 

255 Common Examples: 
 

• Dynamic Range Compression 
 
 
 

• Gamma Correction 
 
 
 
 

)1log()( rcrT � 

JcrrT  )(
10 J

1.0 J

Narrow range of “dark” gets 
mapped to broad range of “gray” 

Black 



Inverse lookup table

(a) 8-bit image. (b) Intensity transformation function used to obtain the digital equivalent of a 
“photographic” negative of an 8-bit image. The arrows show transformation of an arbitrary input 
intensity value z into its corresponding output value s0. (c) Negative of (a) obtained using (b) 



Better visibility  
for display / diagnosis



Binary
• Small storage 

• Easier to apply  
some operations
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Simplest form of processing: Point Processing 
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Gamma Correction
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Origins of gamma correction: 

0 

Luminance 

Applied/Measured Voltage (U) 

•  Nonlinear response of CRT’s and imagers 
 

•  To correct for this in image display, the images or  
commands to the CRT are “predistorted”  

5.28.1 dd
 

D

DUL
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Gamma Correction: 
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Origins of gamma correction: 
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Luminance 

Applied/Measured Voltage (U) 
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Gamma Correction: 



Scaling



Log scale display



Synthetic lookup tables

“Red Hot” in FIJI 

Chasing the right one can make it easier to see stuff — and to get published…

Inverse
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Histogram Processing: 

Graylevel 

9 

15 

7 

5 
Histogram: 

• Distribution of gray-levels can be judged 
by measuring a Histogram 
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For B-bit image,  

• Initialize 2B counters with 0 
• Loop over all pixels x,y 
• When encountering gray level f(x,y)=i, increment  
the counter number i 

   
• With proper normalization, the histogram can be 
interpreted as an estimate of the probability density 
function (pdf) of the underlying random variable (the 
graylevel) 
   
•You can also use fewer, larger bins to trade off 
amplitude 

Histogram Processing: 



Histograms



Histogram manipulation

Illustration of the mean and standard deviation as functions of 
image contrast. (a)-(c) Images with low, medium, and high 
contrast, respectively. (Original image courtesy of the National 
Cancer Institute.)
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Example: 
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Example: 



Histogram Equalization

• Make it flat and spread it out 

• This is a nonlinear operation 
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• The general idea: map the histogram of the 
given image to a flat histogram by performing 
a nonlinear operation on the gray value at 
each pixel.  
 

• Nonlinear Transformation: s = T(r)  
• Questions: 

– Why do this?  
– What is the right transformation? 
– How do we find it, given a particular image.  

 
• Analysis for the continuous grayscale first 

Histogram Equalization 
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Histogram Equalization Example: 
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• Consider the histogram of the given (continous graytone) 
image as a pdf p(r), where r is in the interval [0,1]. 

 
– Recall that as a pdf we have 

 
– Any pixel operation T(r) should map [0,1] to [0,1]  

 
• Desired properties of T(r): 

 
– Keep the back/white order (T(r) should be monotonic increasing) 
– T(r) should be single valued (one-to-one), hence invertible. 

 
• Question: Given image with histogram p(r), what does 

histogram of s=T(r), denoted q(s), look like in general? 

1)    and     0)(
1

0
 t ³ drp(rrp

Derivation 

Histogram Equalization: Cont.’d 
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Color Histogram



Spatial filtering

• In image space

• In frequency space



Image size / Sampling



Aliasing



Nyquist sampling  
= twice the frequency



Aliasing

• (Image downsized around four times)



Re-sampling: 
Change size by interpolation

(a) Image reduced to 72 dpi and zoomed back to its original 930 dpi using  
nearest neighbor interpolation. 
(b) Image reduced to 72 dpi and zoomed using bilinear interpolation.  
(c) Same as (b) but using bicubic interpolation. 



Average when downsizing?

• Edges lose contrast if you average but result is smoother



Convolution
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Defining convolution 
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,

],[],[],)[(

f 

• Let f be the image and g be the kernel. The 
output of convolving f with g is denoted f * g. 

Source: F. Durand 

•   Convention: kernel is “flipped” 
•   MATLAB: conv2 vs. filter2 (also imfilter) 
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Key properties 

• Linearity: filter(f1 + f2 ) = filter(f1) + filter(f2) 
 

• Shift invariance: same behavior 
regardless of pixel location: filter(shift(f)) = 
shift(filter(f)) 
 

• Theoretical result: any linear shift-invariant 
operator can be represented as a 
convolution 
 



Convolution
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Convolve  
“Drag-and-Stamp”
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Important details 
• What is the size of the output? 
• MATLAB: filter2(g, f, shape) 

– shape = ‘full’: output size is sum of sizes of f and g 
– shape = ‘same’: output size is same as f 
– shape = ‘valid’: output size is difference of sizes of f 

and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 
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Image Enhancement:Spatial Filtering Operation 
• An important point: Edge Effects 

– To compute all pixel values in the output image, we need to fill in a “border” 

Mask dimension = 2M+1 

Border dimension = M 
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Spatial Filtering: Blurring 

• Example 

1 1 1 

1 1 1 

1 1 1 

1/9 

Averaging Mask: 
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Image Enhancement:Spatial Filtering Operation 
• Local linear oprations on an image 

)1,1()1,1(               
),1()1,1(),(

98

11

�����
����� 

yxfwyxfw
yxfwyxfwyxg �Input: f(x,y), Output: g(x,y): 

Input Image 

Mask 

Output Image 

Usually odd 
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Image Enhancement II:  
Neighborhood Operations 
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Image Enhancement:Spatial Filtering Operation 
• Idea: Use a “mask” to alter pixel values 

according to local operation 
• Aim: (De)-Emphasize some spatial frequencies 

in the image. 
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Image Enhancement:Spatial Filtering Operation 
• An important point: Edge Effects (Ex.: 5x5 Mask) 

– How to fill in a “border” 
• Zeros (Ringing) 
• Replication (Better) 
• Reflection (“Best”) a b 

c d 

a b 

a b c d 

a 

a 

c 

c 

b 

b 

d 

d 

• Procedure: 
– Replicate row-wise 
– Replicate column-wise 
– Apply filtering 
– Remove borders 

EE 264: Image Processing and Reconstruction Peyman Milanfar 
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Implementation 

• What about near the edge? 
– the filter window falls off the edge of the 

image 
– need to extrapolate 
– methods (MATLAB): 

• clip filter (black):   imfilter(f, g, 0) 
• wrap around:  imfilter(f, g, ‘circular’) 
• copy edge:    imfilter(f, g, ‘replicate’) 
• reflect across edge:  imfilter(f, g, ‘symmetric’) 

Source: S. Marschner 
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• What about near the edge? 
– the filter window falls off the edge of the 

image 
– need to extrapolate 
– methods: 

• clip filter (black) 
• wrap around 
• copy edge 
• reflect across edge 

Source: S. Marschner 
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Image Enhancement:Spatial Filtering Operation 
5x5 Blurring with 0-padding 5x5 Blurring with reflected padding 
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Gaussian Kernel 

• Constant factor at front makes volume sum to 1 (can be 
ignored, as we should re-normalize weights to sum to 1 in 
any case) 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003 

5 x 5, V = 1 

Source: C. Rasmussen  

fspecial(‘gauss’,5,1) 
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Choosing kernel width 

• Gaussian filters have infinite support, but 
discrete filters use finite kernels 

Source: K. Grauman 
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Choosing kernel width 

• Gaussian filters have infinite support, but 
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Source: K. Grauman 
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Choosing kernel width 

• Rule of thumb: set filter half-width to about  
3 σ 
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Example: Smoothing with a Gaussian 
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Mean vs. Gaussian filtering 
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Gaussian filters 
• Remove “high-frequency” components 

from the image (low-pass filter) 
• Convolution with self is another Gaussian 

– So can smooth with small-width kernel, 
repeat, and get same result as larger-width 
kernel would have 

– Convolving two times with Gaussian kernel of 
width σ is same as convolving once with 
kernel of width  σ√2  

• Separable kernel 
– Factors into product of two 1D Gaussians 
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Gaussian filters 
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from the image (low-pass filter) 
• Convolution with self is another Gaussian 

– So can smooth with small-width kernel, 
repeat, and get same result as larger-width 
kernel would have 

– Convolving two times with Gaussian kernel of 
width σ is same as convolving once with 
kernel of width  σ√2  

• Separable kernel 
– Factors into product of two 1D Gaussians 



Use this to sharpen!
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Separability of the Gaussian filter 

 

Source: D. Lowe 
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Sharpening revisited 
• What does blurring take away? 

original smoothed (5x5) 

– 

detail 

= 

sharpened 

= 

Let’s add it back: 

original detail 

+ α 
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More on Linear Operations: Sharpening Filters  

• Sharpening filters use masks that typically have 
+ and – numbers in them. 
 

• They are useful for highlighting or enhancing 
details and high-frequency information (e.g. 
edges)  
 

• They can (and often are) based on derivative-
type operations in the image (whereas 
smoothing operations were based on “integral” 
type operations)  

EE 264: Image Processing and Reconstruction Peyman Milanfar 
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Differentiation and convolution 
• Recall, for 2D function, 
f(x,y): 
 
 
 

• This is linear and shift 
invariant, so must be 
the result of a 
convolution. 

• We could approximate 
this as 
 
 
 

• which is obviously a 
convolution with kernel 

��

wf
wx

 lim
Ho0

f x � H, y� �
H

�
f x,y� �
H

§�
©�¨�

·�
¹�¸�

��

wf
wx

|
f xn�1,y� �� f xn , y� �

'x

  -1   1 

Source: D. Forsyth, D. Lowe 



Derivatives
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Derivative-type Filters  
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Variations of the Laplacian Filter  
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Sharpening Using the Laplacian Filter  
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Sharpening Using the Laplacian Filter  

),( ),( ),( 2 yxfyxfAyxg �� 
»
»
»

¼

º

«
«
«

¬

ª

���
���
���

111
181
111

A

Boosting High 
Frequencies 



Laplacian of Gaussian
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Gaussian Unsharp Mask Filter 

Gaussian 
unit impulse 

Laplacian of Gaussian 

))1(()1()( gefgffgfff �� �� �� DDDD

image blurred 
image 

unit impulse 
(identity) 
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Edge detection 
• Goal:  Identify sudden 

changes (discontinuities) 
in an image 
– Intuitively, most semantic 

and shape information from 
the image can be encoded 
in the edges 

– More compact than pixels 
 

• Ideal: artist’s line drawing 
(but artist is also using 
object-level knowledge) 

Source: D. Lowe 



Edge detection

3

CSE486
Robert Collins

Example: Laplacian

Ixx Iyy

Ixx+Iyy

∇∇22I(x,y)I(x,y)

CSE486
Robert Collins

Notes about the Laplacian:

•  ∇∇22I(x,y) is a SCALARI(x,y) is a SCALAR

–– ↑↑ Can be found using a SINGLE mask Can be found using a SINGLE mask

–– ↓↓ Orientation information is lost Orientation information is lost

•• ∇∇22I(x,y) is the sum of SECOND-order derivativesI(x,y) is the sum of SECOND-order derivatives

–– But taking derivatives increases noiseBut taking derivatives increases noise

–– Very noise sensitive!Very noise sensitive!

•• It is always combined with a smoothing operation:It is always combined with a smoothing operation:

SmoothSmooth LaplacianLaplacian
I(x,y)I(x,y) O(x,y)O(x,y)

O.Camps, PSU

CSE486
Robert Collins

LoG Filter

• First smooth (Gaussian filter),

• Then, find zero-crossings (Laplacian filter):

– O(x,y) = ∇∇22((I(x,y) * G(x,y))I(x,y) * G(x,y))

O.Camps, PSU

Laplacian of 

Gaussian-filtered image

Laplacian of Gaussian (LoG)

-filtered image

Do you see the distinction?

CSE486
Robert Collins

1D Gaussian and Derivatives
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CSE486
Robert Collins

Second Derivative of a Gaussian

2D2D

analoganalog

““Mexican HatMexican Hat””

O.Camps, PSU

LoG

2
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2
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x

e
x

xg
−
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4 2

CSE486
Robert Collins

Effect of LoG Operator

LoG-filteredOriginal

Band-Pass Filter (suppresses both high and low frequencies)

Why?  Easier to explain in a moment.



Blob detection
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CSE486
Robert Collins

Zero-Crossings as an Edge Detector

Raw zero-crossings (no contrast thresholding)

LoG sigma = 2, zero-crossing

CSE486
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Raw zero-crossings (no contrast thresholding)

LoG sigma = 4, zero-crossing

Zero-Crossings as an Edge Detector
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Zero-Crossings as an Edge Detector

Raw zero-crossings (no contrast thresholding)

LoG sigma = 8, zero-crossing
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Note: Closed Contours

You may have noticed that zero-crossings form

closed contours.  It is easy to see why…

Think of equal-elevation

contours on a topo map.

Each is a closed contour.

Zero-crossings are contours

at elevation = 0 .

remember that in our case, the height map is of a LoG filtered

image - a surface with both positive and negative “elevations”
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Other uses of LoG:

 Blob Detection

Lindeberg: ``Feature detection with automatic
scale selection''. International Journal of
Computer Vision, vol 30, number 2, pp. 77--
116, 1998.
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Pause to Think for a Moment:

How can an edge finder also be used to

find blobs in an image?



Sampling in time

SPEED



Rolling Shutter/Global Shutter  
and Artifacts



Flash Strobe



Average multiple images

(a) Sample noisy image of the Sombrero Galaxy. (b)-(f) Result of 
averaging 10, 50, 100, 500, and 1,000 noisy images, respectively. All

(a) Noisy image of the Sombrero Galaxy. (b)-(f) Result of averaging 10, 50, 100, 500, and 1,000 noisy 
images, respectively. All images are size 1548x2238 pixels and all scaled so intensities span the full  
[0, 255] intensity scale. 



Computational Denoising

Denoised using ROF denoise in FIJI 



Digital Subtraction Angiography

Digital subtraction angiography.  
(a) Mask image. (b) A live image.  
(c) Difference between (a) and (b).  
(d) Enhanced difference image.  

Image courtesy of the Image  
Sciences Institute, University  
Medical Center, Netherlands 
(from our textbook: 
Digital Image Processing in Matlab) 



Filtering in Frequency 
(Fourier) Space



Time	and	space

Pressure

Time

Amplitude

Frequency
t f = 1/ t

We can Fourier Transform back and forth



Fourier seriesBonus:	The	Fourier	Series!

Amplitude vs FrequencyPressure vs Time
This works exactlys the same way for light, where we look at the wavelength vs frequency

Amplitude

Frequency



Short-time	Fourier	spectrogram

time

frequency



1D spatial frequency



2D spatial frequency



High and low-pass



Filtering out a single  
spatial frequency


